Simple revision for Mathematics for first Preparatory

Geometry

The cuboid:

Lateral area = base perimeter x height = $(L + W) \times 2 \times H$

Total surface area = lateral area + base area x 2

$$= (L + W) \times 2 \times H + L \times W \times 2$$

$$=$$
 (LW + WH + LH) x 2

The volume = length x width x height = $L \times W \times H$

The cube:

The area of one face = $L \times L = L^2$

The lateral area = face area $x 4 = L x L x 4 = 4L^2$

The total area = face area $x 6 = L x L x 6 = 6L^2$

The volume = $L \times L \times L = L^3$

The círcle:

The circumference of the circle = $2 \Pi r$

The area of the circle = Πr^2

The sphere:

The lateral area of a sphere = $4 \pi r^2$

The volume of the sphere = $\frac{4}{3} \prod r^3$

The right circular cylinder:

The lateral area of the cylinder = $2 \Pi r h$

The total area of the cylinder = L.A + B.A x 2 = $2 \Pi r h + 2 \Pi r^2$

The volume of the cylinder = B.A x h = $\Pi r^2 h$

The Parallelogram

Defínítíon:

A parallelogram is a quadrilateral in which each two opposite sides are parallel

In the opposite figure:

ABCD is a parallelogram that means

AB = DC, AD = BC, $\overline{AB} // \overline{DC}$, $\overline{AD} // \overline{BC}$

$$m(\angle A) = m(\angle C), m(\angle B) = m(\angle D)$$

In a parallelogram each two opposite angles are equal in measures

$$m(\angle A) + m(\angle B) = 180^{0}, m(\angle C) + m(\angle D) = 180^{0}$$

In a parallelogram the sum of measures of each two consecutive angles is 180°

$$AM = CM, BM = DM$$

In a parallelogram the two diagonals bisect each other

Properties of a parallelogram

(3)

- Each two opposite sides are parallel and equal in length
- Each two opposite angles are equal in measures
- The two diagonals bisect each other
- The sum of measures of each two consecutive angles is 180°

P

The special cases of the parallelogram

	Rectangle	A rhombus	A square
Diagonals	Its two diagonals are equal in length	Its two diagonals are perpendicular and not equal	Its two diagonals
			are perpendicular
			and equal in
		•	length
Angles	One of its angle is		One of its angle is
	right [All angles		right [All angles
	are equal in		are equal in
	measure]		measure]
Sides		Two adjacent	Two adjacent
		sides are equal in	sides are equal in
		length [All sides	length [All sides
		are equal in	are equal in
		length]	length]

Definition:

A quadrilateral in which only two opposite sides are parallel is called trapezium.

In the opposite figure:

ʿĂD` // ʿBC`

.: ABCD is a trapezium

The cases of congruence of two triangles

Fírst case: Two sídes and the included angle [S. A. S.]

Two triangles are congruent if two sides and included angle in one of them are congruent to their corresponding elements in the other

Second case: Two angles and a corresponding side [A. S. A.]

Two triangles are congruent if two angles and the side drawn between their vertices of one of triangle are congruent to their corresponding elements in the other

Third case: Three sides [S. S. S.]

Two triangles are congruent if each side of one of triangle is congruent to their corresponding side in the other

Fourth case: Ríght angle, hypotenuse and a síde [R. H. S.]

Two right angled triangles are congruent if the hypotenuse and a side of one of triangle are congruent to their corresponding elements in the other

Mr/ Ibram Mahrous

Mr/ Ibram Mahrous

Mr/ Ibram Mahrous

Second preparatory

$$\ln \Delta XYZ, m (\angle XYZ) = 90^{0}$$

$$(XZ)^{2} = (XY)^{2} + (YZ)^{2}$$

$$= (7)^{2} + (24)^{2} = 625$$

$$XZ = \sqrt{625} = 25 \text{ cm}$$
Area of $\Delta XYZ = \frac{1}{2} \times B.L \times H = \frac{1}{2} \times 24 \times 7 = 84 \text{ Cm}^{2}$

$$\ln \Delta XLZ, m (\angle XLZ) = 90^{0}$$

$$(LZ)^{2} = (XZ)^{2} - (XL)^{2}$$

$$= (25)^{2} - (15)^{2} = 400$$

$$LZ = \sqrt{400} = 20 \text{ cm}$$

Area of \triangle ABC = $\frac{1}{2}$ X B.L X H = $\frac{1}{2}$ X 15 X 20 = 150 Cm²

Area of the figure XYZL = 84 + 150 = 234 Cm²